
WBMA063-05 – Numerical Linear Algebra
Mock Exam
2025-2026

Instructions:

1. Write your name and student number of the top of each sheet of writing
paper!

2. Use the writing (lined) and scratch (blank) paper provided, raise your hand if you need
more paper.

3. Start each question on a new page.

This exam consists of 4 questions for a total of 90 points. 10 points are free.

1. Let A ∈ Rn×n be a non-singular matrix.

(a) (4 points) Define the LU decomposition of A. Also define the pivoted LU decom-
position of A.

Solution: The LU decomposition of A is A = LU where L ∈ Rn×n is unit lower
triangular (lower triangular with 1s on the diagonal) and U ∈ Rn×n is upper
triangular. The pivoted LU decomposition is of the form PA = LU , where L
and U are as before and P ∈ Rn×n is a permutation matrix. That means P has
columns of the identity but in any order.

(b) (8 points) Assume the LU decomposition of A = LU exists. Show that the domi-
nant computational cost of computing L and U is O(2

3
n3) flops.

Solution: Suppose we have completed k − 1 steps of the LU decomposition
algorithm, and define

A← A− L1U1 − · · · − Lk−1Uk−1.
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In step k of the LU algorithm, we take p = A(k, k) to be the pivot and define

Lk =



0
...
0
1

A(k + 1, k)/p
...

A(n, k)/p


, U k =

[
0 . . . 0 A(k, k) A(k, k + 1) . . . A(k, n)

]
,

which costs n− k flops. Then we compute the left-lower (n− k)× (n− k) block
of LkU k, which costs (n − k)2 flops. Finally, we need to compute the new A,
which comes down to (n− k)2 minusses in the left-lower block of A−LkU k. So
in total in step k, we have

n− k + (n− k)2 + (n− k)2 ∼ 2(n− k)2 flops.

The total dominant cost is then

n−1∑
k=1

2(n− k)2 = 2n2

n−1∑
k=1

1 + 2
n−1∑
k=1

k2 − 4n
n−1∑
k=1

k

∼ 2n3 + 2
n3

3
− 4n

n2

2

=
2

3
n3.

(c) (5 points) Suppose you have computed a pivoted LU decomposition of A, PA =
LU . Describe an efficient algorithm to explicitly compute the inverse A−1. What
is the computational cost of your algorithm?
Hint: consider building A−1 one column at a time.

Solution: Let A−1 =
[
b1 b2 . . . bn

]
. Since AA−1 = I, we have Abi = ei

for all 1 ≤ i ≤ n, where ei is the ith basis vector [0, . . . , 1, . . . 0]T . So given a
pivoted LU decomposition of A, an algorithm to build the inverse would be:

For i = 1, . . . , n

êi = Pei

Lyi = êi Solve with forward substitution

Ubi = yi Solve with backward substitution

The cost of this algorithm is n times O(2n2) flops, which is O(2n3).
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(d) (10 points) Let A = AT ∈ Rn×n be a symmetric positive definite matrix. Suppose
we computed a Cholesky decomposition of A in floating point arithmetic with a
backward stable algorithm. Then, still in floating poitn arithmetic, we use the
computed Cholesky factors to solve the linear system Ax = b. Show the computed
solution x̂ is backward stable. You may use the fact that a triangular solve algorithm
is backward stable.

Solution: Since the computed Cholesky factor R̂ is backward stable, we have

R̂T R̂ = A+ δACH for some δACH such that
∥δA∥
∥A∥

= O(ε),

where ε is machine precision. Since forward substitution is backward stable, we
have that the computed solution to R̂Ty = b satisfies

(R̂T + δR̂T
1 )ŷ = b for some δR̂1 such that

∥δR̂1∥
∥R̂∥

= O(ε).

Similarly, the computed solution to R̂x = ŷ satisfies

(R̂ + δR̂2)x̂ = ŷ for some δR̂2 such that
∥δR̂2∥
∥R̂∥

= O(ε).

We can combine this to find

b = (R̂T + δR̂T
1 )ŷ

= (R̂T + δR̂T
1 )(R̂ + δR̂2)x̂

= (R̂T R̂ + R̂T δR̂2 + δR̂T
1 R̂ + δR̂T

1 δR̂2)x̂

= (A+ δACH + R̂T δR̂2 + δR̂T
1 R̂ + δR̂T

1 δR̂2)x̂

Define
δA = δACH + R̂T δR̂2 + δR̂T

1 R̂ + δR̂T
1 δR̂2.

Then

∥δA∥ ≤ ∥δACH∥+ ∥R̂T∥∥δR̂2∥+ ∥δR̂T
1 ∥∥R̂∥+ ∥δR̂T

1 ∥∥δR̂2∥
= O(ε∥A∥) +O(ε∥R̂∥2).

Now all we need to show is that ∥R̂∥2 = O(∥A∥), and then we have backward
stability. There are many ways to do this. We note that

∥R̂∥22 = ∥R̂T R̂∥2,

which can be noted with e.g. the SVD. Then, immediately

∥R̂∥22 = ∥R̂T R̂∥2 ≤ ∥A∥2 +O(ε∥A∥2) = O(∥A∥2).
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(e) (4 points) An alternative approach to solve symmetric positive definite linear sys-
tems is to use Conjugate Gradients (CG). Reflect on the different contexts in which
you might prefer a Cholesky-based approach to CG, and on the different contexts
in which you might prefer CG to Cholesky. Explain your answer.

Solution: The Cholesky-based approach is guaranteed to be backward stable,
but costs O(1

3
n3) flops. This makes it often the appropriate choice when A is

not too large. When A is very large, then a direct method might not be possible.
The choice for CG is reasonable when 1) A is very large, and/or 2) A is very
sparse, since the dominant cost of a CG iteration is a matrix-vector product
with A, and/or 3) we do not require a highly accurate solution, since we can
stop CG early.
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2. Let A ∈ Rm×n with m > n be a matrix with singular value decomposition A = UΣV T ,
where Σ is square.

(a) (3 points) For each of the factors U , Σ, and V in the singular value decomposition,
provide their dimension and their special structure.

Solution: U ∈ Rm×n has orthonormal columns, Σ ∈ Rn×n is diagonal with on
the diagonal non-increasing non-negative values, and V ∈ Rn×n is an orthogonal
matrix.

(b) (3 points) Assume A has full column rank. Express the solution of the least squares
problem

x∗ = arg min
x∈Rn

∥Ax− b∥2

in terms of the singular value decomposition factors. You need not prove the result.

Solution: x∗ = V Σ−1UTb

(c) (8 points) Again assume A has full rank. Show that

∥Ax∗ − b∥2 = ∥UT
⊥b∥2,

where U⊥ ∈ Rm×(m−n) is the orthogonal complement of the left singular vectors U .
That is, U⊥ ∈ Rm×(m−n) is such that

UF =
[
U U⊥

]
is a square orthogonal matrix.

Solution: We can write

A =
[
U U⊥

] [Σ
0

]
V T ,

and we know that x∗ = V Σ−1UTb. Now

∥Ax∗ − b∥2 =
∥∥(UΣV T )(V Σ−1UTb)− b

∥∥
2

=
∥∥UUTb− b

∥∥
2

=
∥∥(UUT − I)b

∥∥
2
.

Since

UFU
T
F = I =

[
U U⊥

] [UT

UT
⊥

]
= UUT + U⊥U

T
⊥ =⇒ UUT − I = −U⊥U

T
⊥ .

Now

∥Ax∗ − b∥22 = ∥U⊥U
T
⊥b∥22 = bTU⊥U

T
⊥U⊥U

T
⊥b = bTU⊥U

T
⊥b = ∥UT

⊥b∥22
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(d) (4 points) Computing the solution to a least squares problem

min
x∈Rn

∥Ax− b∥2

via the singular value decomposition of A is backward stable. Suppose this algo-
rithm is used in floating point arithmetic to compute the solution x̂ to the least
squares problem. What does it mean for x̂ to be backward stable? Provide a
mathematical expression.

Solution:
x̂ = argmin ∥(A+ δA)x− (b+ δb)∥2

for some δA and δb such that

∥δA∥
∥A∥

= O(ε), ∥δb∥
∥b∥

= O(ε),

where ε is machine precision.

(e) (3 points) Suppose x̂ is a backward stable solution to

min
x∈Rn

∥Ax− b∥2,

which has exact solution x∗. What can you say about the size of

∥x̂− x∗∥
∥x∗∥

?

Is it always, sometimes, or never close to machine precision? Support your reason-
ing.

Solution: The forward error is sometimes close, but it depends on the condi-
tioning of A. If A is well-conditioned, say κ(A) ≈ 1, then one can expect the
forward error to be close to machine precision. If κ(A) ≫ 1, then the forward
error is big.
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3. Let A ∈ Rn×n be diagonalizable with eigenpairs (λi,vi) where all vi have unit norm.
Assume the eigenvalues are all real and are ordered as

|λ1| > |λ2| > · · · > |λn| > 0.

The power method starts by initializing a vector x0 ∈ Rn with unit norm, and then
iterating as:

For k = 0, 1, 2, . . .

yk = Axk

xk+1 = yk/∥yk∥2.

(a) (6 points) Expand x0 in the basis formed by the eigenvectors vi:

x0 =
n∑

i=1

αivi.

Show

xk = sign(λ1)
k

α1v1 +
n∑

i=2

αi

(
λi

λ1

)k
vi

∥α1v1 +
n∑

i=2

αi

(
λi

λ1

)k
vi∥2

.

Solution: Note first we have

xk =
Akx0

∥Akx0∥2
and consider Akx0:

Akx0 =
n∑

i=1

αiA
kvi.

Since vi is an eigenvector of A, we have

Avi = λivi =⇒ A2vi = λiAvi = λ2
ivi =⇒ · · · =⇒ Akvi = λk

i vi.

So that

Akx0 =
n∑

i=1

αiA
kvi.

=
n∑

i=1

αiλ
k
i vi

= α1λ
k
1v1 +

n∑
i=2

αiλ
k
i vi

= λk
1

(
α1v1 +

n∑
i=2

αi

(
λi

λ1

)k

vi

)
.
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The norm of this is

∥Akx0∥2 = |λ1|k
∥∥∥∥∥α1v1 +

n∑
i=2

αi

(
λi

λ1

)k

vi

∥∥∥∥∥
2

.

The result follows by seeing that

(b) (4 points) Explain what happens to xk as k tends to infinity. Additionally, explain
how the dominant eigenvalue λ1 can be approximated from xk.

Solution: We have xk → v1 since everything inside the sum tends to zero.
Using the Rayleigh quotient

λ1 =
v∗
1Av1

v∗
1v1

≈ x∗
kAxk

x∗
kxk

= x∗
kAxk.

(c) (6 points) Assume A is symmetric. Show

|x∗
kAxk − λ1| ≈

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
,

using the simplification that, as k →∞,

xk ≈ sign(λ1)
k

α1v1 + α2

(
λ2

λ1

)k
v2

∥α1v1 + α2

(
λ2

λ1

)k
v2∥2

.

Solution: Since A is symmetric, its eigenvectors form an orthogonal basis, so

we have v∗1v2 = 0. Let βk = ∥α1v1 + α2

(
λ2

λ1

)k
v2∥2. Then

β2
k x

∗
kAxk ≈

(
α1v1 + α2

(
λ2

λ1

)k

v2

)T

A

(
α1v1 + α2

(
λ2

λ1

)k

v2

)

=

(
α1v1 + α2

(
λ2

λ1

)k

v2

)T (
α1λ1v1 + α2

(
λ2

λ1

)k

λ2v2

)

= α1λ1 + 2α1α2λ2

(
λ2

λ1

)k

vT
1 v2 + α2

2

(
λ2

λ1

)2k

= α1λ1 + α2
2λ2

(
λ2

λ1

)2k

.
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Where we used vT
2 v1 = 0 and that ∥v1∥2 = ∥v2∥2 = 1. Similarly,

β2
k = α2

1 + α2
2

(
λ2

λ1

)2k

So that

x∗
kAxk ≈

α1λ1 + α2
2λ2

(
λ2

λ1

)2k
√

α2
1 + α2

2

(
λ2

λ1

)2k → λ1

at rate (
λ2

λ1

)2k

.

(d) (3 points) How would you adapt the algorithm to instead find the eigenvector cor-
responding to the eigenvalue of A closest to -2? Explain your reasoning.

Solution: The iterates

xk =
(A+ 2λI)−kx0

∥(A+ 2λI)−kx0∥2
,

and converge to the eigenvector corresponding the the smallest eigenvalue (in
magnitude) of (A + 2λI), which corresponds to the eigenvalue of A closest to
−2. So xk converges to the corresponding eigenvector.
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4. Consider a non-singular diagonalizable matrix A ∈ Rn×n.

(a) (4 points) The k-dimensional Krylov subspace associated to the linear system Ax =
b is

Kk(A, b) = span
{
b, Ab, A2b, . . . , Ak−1b

}
.

Define a matrix Kk ∈ Rn×k whose columns are the natural basis vectors for the
Krylov subspace normalized; that is,

Kk =
[

b
∥b∥2

Ab
∥Ab∥2

A2b
∥A2b∥2 . . . Ak−1b

∥Ak−1b∥2

]
.

Qualitatively, explain why the matrix Kk becomes increasingly ill-conditioned as k
increases.

Solution: The vector Akb tends to the dominant eigenvector of A as k tends to
infinity (power method). So the columns of Kk increasingly point in the same
direction, which means the matrix will be increasingly ill-conditioned.

(b) (8 points) It is instead advised to use the Arnoldi algorithm to build a basis for the
Krylov subspace Kk(A, b). This algorithm computes an orthogonal basis {qj} for
the Krylov subspace:

Kk(A, b) = span {q1, q2, . . . , qk} , qT
i qj =

{
1 if i = j

0 if i ̸= j

The matrix
Qk =

[
q1 q2 . . . qk

]
is then well-conditioned. The Arnoldi algorithm (in exact arithmetic) can be written
as

q1 = b/∥b∥2
For j = 1, 2, . . . , k

v = Aqj

w = v −
j∑

i=1

(qT
i v)qi

qj+1 = w/∥w∥2

This is not how the algorithm is implemented in floating point arithmetic. Describe
the algorithm as it is implemented. Then, show that after k steps, we have the
identity

AQk = Qk+1H̃k,

for a (k + 1)× k matrix H̃k. Describe the structure of this matrix.
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Solution: The Arnoldi algorith uses modified Gram-Schmidt, and boils down
to

q1 = b/∥b∥2
For j = 1, 2, . . . , k

v = Aqj

For i = 1, 2, . . . , j

hij = qT
i v

v ← v − hijqi

hj+1,j = ∥v∥2
qj+1 = v/∥v∥2

It is immediate that

hj+1,jqj+1 = Aqj − h1jq1 − · · · − hjjqj

and thus that
Aqj = h1jq1 + · · ·+ hjjqj + hj+1,jqj+1.

Since this holds for j = 1, . . . , k, we have

AQk = Qk+1H̃k,

where

H̃k =


h11 h12 . . . h1k

h21 h22 . . . h2k

h32
. . .

...
. . . hk,k

hk1,k

 ,

which is an upper Hessenberg matrix.

(c) (4 points) Let the eigendecomposition of A be given by A = XΛX−1. The residual
at the kth GMRES iterate xk can be bounded by

∥b− Axk∥2
∥b∥2

≤ κ(X) min
p∈Pk

max
λ∈Λ(A)

|p(λ)|,

where we assumed x0 = 0, Pk is a subset of all degree k polynomials p with p(0) = 1,
and Λ(A) is the set of all eigenvalues of A. Comment on the expected convergence
behaviour based on the eigenvalues of A. Distinguish between the case when A is
normal and when A is not normal.
Hint: A is normal when ATA = AAT . The eigenvectors of a normal matrix form
an orthogonal basis.
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Solution: When A is normal, X is orthogonal and thus κ(X) = 1. The new
bound is

∥b− Axk∥2
∥b∥2

≤ min
p∈Pk

max
λ∈Λ(A)

|p(λ)|.

With this bound, we have that the eigenvalues of A can be used to predict
the convergence behaviour of GMRES. In particular, if the eigenvalues are in a
single cluster (away from zero), or in a small number of clusters (all away from
zero), then convergence is fast.
When A is not normal, the eigenvalues of A are not enough to predict the
convergence behaviour of GMRES. The reason is the presence of κ(X) in the
bound, which can be large.

(d) (3 points) Let A be symmetric matrix with m < n distinct eigenvalues. Will GM-
RES converge to the exact solution in at mostm iterations? Explain your reasoning.

Solution: When A is symmetric, it is normal. So now we have the bound

∥b− Axk∥2
∥b∥2

≤ min
p∈Pk

max
λ∈Λ(A)

|p(λ)|.

If A has m distinct eigenvalues λ1, . . . , λm, there exists a degree m polynomial

p(x) =

(
1− x

λ1

)
. . .

(
1− x

λm

)
that is zero at all eigenvalues. So then

∥b− Axm∥2
∥b∥2

≤ 0

and xm must be the exact solution.
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