WBMAO063-05 — Numerical Linear Algebra
Mock Exam
2025-2026

Instructions:

1. Write your name and student number of the top of each sheet of writing
paper!

2. Use the writing (lined) and scratch (blank) paper provided, raise your hand if you need
more paper.

3. Start each question on a new page.

This exam consists of 4 questions for a total of 90 points. 10 points are free.

1. Let A € R™" be a non-singular matrix.

(a) (4 points) Define the LU decomposition of A. Also define the pivoted LU decom-
position of A.

Solution: The LU decomposition of A is A = LU where L € R"*" is unit lower
triangular (lower triangular with 1s on the diagonal) and U € R™" is upper
triangular. The pivoted LU decomposition is of the form PA = LU, where L
and U are as before and P € R™" is a permutation matrix. That means P has
columns of the identity but in any order.

(b) (8 points) Assume the LU decomposition of A = LU exists. Show that the domi-
nant computational cost of computing L and U is (’)(%n?’) flops.

Solution: Suppose we have completed k — 1 steps of the LU decomposition
algorithm, and define

A+ A— Ly —---— Lk—lUk—l-




In step k of the LU algorithm, we take p = A(k, k) to be the pivot and define
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which costs n — k flops. Then we compute the left-lower (n — k) x (n — k) block
of LU}, which costs (n — k)? flops. Finally, we need to compute the new A,
which comes down to (n — k)? minusses in the left-lower block of A — L,U}. So
in total in step k, we have

n—k+m—k?*+n—k)?>*~2n-—k)?* flops.

The total dominant cost is then
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(c) (5 points) Suppose you have computed a pivoted LU decomposition of A, PA =
LU. Describe an efficient algorithm to explicitly compute the inverse A=, What
is the computational cost of your algorithm?

Hint: consider building A~! one column at a time.

Solution: Let A~! = [bl by ... bn}. Since AA™! = I, we have Ab; = e;
for all 1 < i < n, where ¢; is the ith basis vector [0,...,1,...0]T. So given a
pivoted LU decomposition of A, an algorithm to build the inverse would be:

For 1 =1,...,n
éz‘ = PEZ‘
Ly, = é; Solve with forward substitution

Ub; =y, Solve with backward substitution

The cost of this algorithm is n times O(2n?) flops, which is O(2n?).
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(d) (10 points) Let A = AT € R™" be a symmetric positive definite matrix. Suppose
we computed a Cholesky decomposition of A in floating point arithmetic with a
backward stable algorithm. Then, still in floating poitn arithmetic, we use the
computed Cholesky factors to solve the linear system Ax = b. Show the computed
solution & is backward stable. You may use the fact that a triangular solve algorithm
is backward stable.

Solution: Since the computed Cholesky factor R is backward stable, we have

0A
RTR=A+08Acy for some §Acy such that HHAH” O(e),

where ¢ is machine precision. Since forward substitution is backward stable, we
have that the computed solution to RTy = b satisfies

R . J
(R" +6RT)§ =b  for some 6R; such that ol B = O(e).
1 Il
Similarly, the computed solution to Rz = § satisfies
. R J
(R+6Ry)# =14 for some 6 Ry such that H||f]:§|2|” O(e).

We can combine this to find
= (RT +6RT)g
= (RT + 6RT)(R + 6Ry)&
— (RTR+ RT6R, + 6RTR + 6RTOR,)&
— (A+6Ach + RT6R, + 6RTR + 6RO Ry)&

Define - o -
§A=08Acn + RT0Ry + SRT R+ 6R] 6 R,.

Then
ISA| < [|6Acull + |IRT IS Rall + ISRT (||| RI| + |6R] |0 Rs |
= O(c||All) + O(e|| RI?).

Now all we need to show is that | R||2 = O(]|A]|), and then we have backward
stability. There are many ways to do this. We note that

I1RII3 = [|R" Rll2,
which can be noted with e.g. the SVD. Then, immediately
1IR3 = [I1R"Rll> < | All2 + O(el|All2) = O(|All2).
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(e) (4 points) An alternative approach to solve symmetric positive definite linear sys-
tems is to use Conjugate Gradients (CG). Reflect on the different contexts in which
you might prefer a Cholesky-based approach to CG, and on the different contexts
in which you might prefer CG to Cholesky. Explain your answer.

Solution: The Cholesky-based approach is guaranteed to be backward stable,
but costs O(%n:s) flops. This makes it often the appropriate choice when A is
not too large. When A is very large, then a direct method might not be possible.
The choice for CG is reasonable when 1) A is very large, and/or 2) A is very
sparse, since the dominant cost of a CG iteration is a matrix-vector product
with A, and/or 3) we do not require a highly accurate solution, since we can
stop CG early.
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2. Let A € R™™ with m > n be a matrix with singular value decomposition A = ULV,
where ¥ is square.

(a) (3 points) For each of the factors U, ¥, and V' in the singular value decomposition,
provide their dimension and their special structure.

Solution: U € R™*™ has orthonormal columns, ¥ € R"*" is diagonal with on
the diagonal non-increasing non-negative values, and V' € R™*" is an orthogonal
matrix.

(b) (3 points) Assume A has full column rank. Express the solution of the least squares
problem
" = arg min ||Az — b||»
TeR"

in terms of the singular value decomposition factors. You need not prove the result.

Solution: =* = VY 1UThH

(c¢) (8 points) Again assume A has full rank. Show that
| Az" — bll2 = [[UTb]l2,

where U; € R™(m=7) is the orthogonal complement of the left singular vectors U.
That is, U, € R™*(m=7) is such that

Up=[U U]

is a square orthogonal matrix.

Solution: We can write

A=[U U] m VT

and we know that * = VX~'UTb. Now
|Az* — b, = |[(USVT)(VET'UTB) — b,
- Jvors b,
= [[(vUu” = D],
Since

[]T

UpUf =1=1[U U] [Uf

} ="+, U = vvt-1=-U,UT.

Now

Az* —b|2 = U UTD|2 =b"U,UTU, UTb=b"U,U"b = ||UTb|?
2 i 2 € 1 € 1 2
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(d) (4 points) Computing the solution to a least squares problem

min [|[Ax — b||5

xrecR"
via the singular value decomposition of A is backward stable. Suppose this algo-
rithm is used in floating point arithmetic to compute the solution & to the least
squares problem. What does it mean for & to be backward stable? Provide a
mathematical expression.

Solution:
& = argmin||(A+6A)x — (b+ 0b)||2

for some A and b such that
[6Al |60
= (5)7 = (8)’
Al il

where ¢ is machine precision.

(e) (3 points) Suppose & is a backward stable solution to

min | Az — b||s,
xTcRn

which has exact solution x*. What can you say about the size of

A~

& — =]

Is it always, sometimes, or never close to machine precision? Support your reason-
ing.

Solution: The forward error is sometimes close, but it depends on the condi-
tioning of A. If A is well-conditioned, say x(A) = 1, then one can expect the
forward error to be close to machine precision. If k(A) > 1, then the forward
error is big.

Page 6



3. Let A € R™™ be diagonalizable with eigenpairs (\;, v;) where all v; have unit norm.
Assume the eigenvalues are all real and are ordered as
A1) > Ao > > |[\] > 0.
The power method starts by initializing a vector y € R™ with unit norm, and then
iterating as:
For k =0,1,2,...
Tii1 = Yi/ |Yll2-

(a) (6 points) Expand @, in the basis formed by the eigenvectors v;:

n

o = E ;0;.

i=1
Show

n k
Ad
v + > </\—1) v;
—

(2

x), = sign(A;)F - - :
laror + 3 0 (3) il
=2

Solution: Note first we have
AkiL‘O

Ty =
ET ARz

and consider A*x:
n
Akmo = E OéiAk’Ui.
i—1

Since v; is an eigenvector of A, we have
A’UZ‘ = )\i'vi == A2'UZ' = /\zA'Uz = )\12’01 — - = Ak’Ui = )\f’vz
So that

n
Akwoz E Oél'Ak’Ul'.
i=1

n
= E ozl-)\fvi
i=1

n
k E k
= 011)\1’01 + Oéi)\i v;

1=2

= )\]f (Oél'vl + ;O&Z’ ()\—1> ’Ui> .
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The norm of this is

[ A ||z = | A4 ]®

vy + Z a; (/\—Z) v;
i=2 1

2

The result follows by seeing that

(b) (4 points) Explain what happens to xj as k tends to infinity. Additionally, explain
how the dominant eigenvalue \; can be approximated from xy.

Solution: We have x; — wv; since everything inside the sum tends to zero.
Using the Rayleigh quotient
viAv,  xjAxy

~ _ *
)\1 = " ~ " = .’Ek,ACUk

(c) (6 points) Assume A is symmetric. Show

A
lx; Az, — N | = (‘)\—j

2k
)

k
a1v1 + Qo (—2> Vo

using the simplification that, as k — oo,

>

1

x), ~ sign(A;)F - :
lonvy + (i—j) CcA®

Solution: Since A is symmetric, its eigenvectors form an orthogonal basis, so

k
we have vjvy = 0. Let Sy = ||a1v1 + a9 <:\\—f> vsllo. Then

R Ao\ "
ﬁz a:ZA:ck ~ (O&fUl + Qo <)\—) ’UQ) A (Oél’l)l + Qi ()\—) ’UQ)
1 1

k T k
)\2 /\2

= |av; +ay | — Vo Oél)\l’Ul +ao | — )\2’02
)\1 /\1

= Oél)\l + 20(10[2)\2 (—2> 'l){’vz + Oég ( 2>

M




Where we used vv; = 0 and that ||v; ||z = ||vz|2 = 1. Similarly,

2 _ 2 2 )‘2 2
Br = o] + a3 .
1

So that o
al)\l + ag)\g (i—i)

\/04% + a3 (A—fyk
Ao\ 2
)

—>)\1

xp Az, ~

at rate

(d) (3 points) How would you adapt the algorithm to instead find the eigenvector cor-
responding to the eigenvalue of A closest to -27 Explain your reasoning.

Solution: The iterates

(A + 2)\[)_k$0
[(A +2A1)~Fao |

L =

and converge to the eigenvector corresponding the the smallest eigenvalue (in
magnitude) of (A + 2AI), which corresponds to the eigenvalue of A closest to
—2. So x; converges to the corresponding eigenvector.
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4. Consider a non-singular diagonalizable matrix A € R™*".

(a)

(4 points) The k-dimensional Krylov subspace associated to the linear system Az =
b is

Ki(A,b) = span {b, Ab, A%, ..., A*'b} .
Define a matrix K; € R™* whose columns are the natural basis vectors for the
Krylov subspace normalized; that is,

K, — b Ab A%b Ak—1p
k= |Tell: TA4el. TA%[; ~"- JAF 7] |

Qualitatively, explain why the matrix K} becomes increasingly ill-conditioned as k
increases.

Solution: The vector A*b tends to the dominant eigenvector of A as k tends to
infinity (power method). So the columns of K} increasingly point in the same
direction, which means the matrix will be increasingly ill-conditioned.

(8 points) It is instead advised to use the Arnoldi algorithm to build a basis for the
Krylov subspace KCi(A,b). This algorithm computes an orthogonal basis {q,} for
the Krylov subspace:

1 ifi=j

Ku(A,b) = Gy ... q), qFq. =
k(A b) =span{q,, qs, ..., 4}, q; 4, {0 oy

The matrix
Qr = [‘h q; .. Qk}

is then well-conditioned. The Arnoldi algorithm (in exact arithmetic) can be written
as

q, = b/[[bl|>
For y =1,2,...,k
U:qu

J
w=v-> (q/v)g
=1

i1 = w/|[wllz

This is not how the algorithm is implemented in floating point arithmetic. Describe
the algorithm as it is implemented. Then, show that after k steps, we have the
identity ~

AQy = Qi1 Hy,

for a (k + 1) x k matrix Hj. Describe the structure of this matrix.
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Solution: The Arnoldi algorith uses modified Gram-Schmidt, and boils down

to
q, = b/[|b]2
Forj=1,2,... )k
v = Agq;
For:=1,2,...,7
hij:qiTv

v < v — hyj;q;
hivis = vl

qdj+1 = v/||v]l2

It is immediate that

hj+1,jqj+1 = qu - hlel - hjjq]'

and thus that
Aqj = hijqy + -+ hyig; + b5
Since this holds for j = 1,...,k, we have

AQr = Qu1 Hy,
where ) )
hor hea ...  ho
Hy = hso "o |,
ok g
L Py

which is an upper Hessenberg matrix.

(c) (4 points) Let the eigendecomposition of A be given by A = XAX 1. The residual
at the kth GMRES iterate x; can be bounded by

1b — Az |2 .
ol < #(X) min e, (M),
where we assumed &y = 0, Py is a subset of all degree k polynomials p with p(0) = 1,
and A(A) is the set of all eigenvalues of A. Comment on the expected convergence
behaviour based on the eigenvalues of A. Distinguish between the case when A is
normal and when A is not normal.

Hint: A is normal when ATA = AAT. The eigenvectors of a normal matrix form
an orthogonal basis.
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Solution: When A is normal, X is orthogonal and thus x(X) = 1. The new
bound is

b — Az, < min max [p(\)].
11b]]2 PEPK AEA(A)

With this bound, we have that the eigenvalues of A can be used to predict
the convergence behaviour of GMRES. In particular, if the eigenvalues are in a
single cluster (away from zero), or in a small number of clusters (all away from
zero), then convergence is fast.

When A is not normal, the eigenvalues of A are not enough to predict the
convergence behaviour of GMRES. The reason is the presence of x(X) in the
bound, which can be large.

(d) (3 points) Let A be symmetric matrix with m < n distinct eigenvalues. Will GM-
RES converge to the exact solution in at most m iterations? Explain your reasoning.

Solution: When A is symmetric, it is normal. So now we have the bound

b—A
M<mm max_[p(A\)].
I|1b]|2 PEPL AEA(A)
If A has m distinct eigenvalues A1, ..., \,,, there exists a degree m polynomial

that is zero at all eigenvalues. So then

1b — Ayl
B[

and x,, must be the exact solution.

<0
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